On Riemannian Foliations over Positively Curved Manifolds

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

Positively Curved Combinatorial 3-Manifolds

We present two theorems in the “discrete differential geometry” of positively curved spaces. The first is a combinatorial analog of the Bonnet-Myers theorem: • A combinatorial 3-manifold whose edges have degree at most five has edgediameter at most five. When all edges have unit length, this degree bound is equivalent to an angle-deficit along each edge. It is for this reason we call such space...

متن کامل

On One Family of 13-dimensional Closed Riemannian Positively Curved Manifolds

In the present paper we describe one family of closed Riemannian manifolds with positive sectional curvature. Now the list of known examples is not large (for instance, all known manifolds with dimension > 24 are diffeomorphic to compact rank one symmetric spaces) (we restrict ourselves only by pointing out simply connected manifolds) : 1) Berger described all normally homogeneous closed positi...

متن کامل

Counterexamples to Continuity of Optimal Transportation on Positively Curved Riemannian Manifolds

Counterexamples to continuity of optimal transportation on Riemannian manifolds with everywhere positive sectional curvature are provided. These examples show that the condition A3w of Ma, Trudinger, & Wang is not guaranteed by positivity of sectional curvature.

متن کامل

Rigidity of Riemannian Foliations with Complex Leaves on Kähler Manifolds *

We study Riemannian foliations with complex leaves on Kähler manifolds. The tensor T , the obstruction to the foliation be totally geodesic, is interpreted as a holomorphic section of a certain vector bundle. This enables us to give classification results when the manifold is compact.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of Geometric Analysis

سال: 2017

ISSN: 1050-6926,1559-002X

DOI: 10.1007/s12220-017-9901-5